Standoff Project

Team: Elaine Reyes Dakota Saska Tyler Hans Sage Lawrence Brandon Bass

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Project Description (1)

• Problem:

- Adhesive is applied and bracket is taped to help cure adhesive
- Taping is unreliable and costs money and man hours when it fails
- Objective:
 - Analyze and build a prototype that will hold standoff brackets while adhesive cures

Customer Needs

- 1. ESD compliance
- 2. Apply axial forces
- 3. Six degrees of freedom in movement
- 4. Usable 4" 36" inboard of ring
- 5. Transportability
- 6. Ease of operation
- 7. Durability
- 8. Reliability
- 9. Adjustable Interfaces
- 10. Support 10lbs in locked position
- 11. Minimum 3.0 Factor of Safety

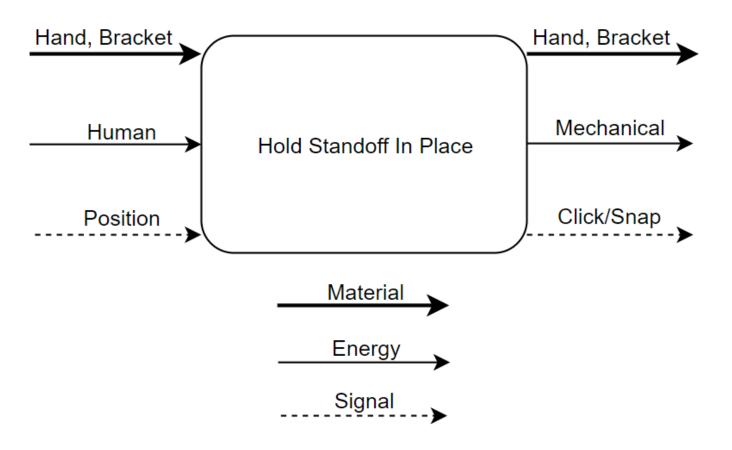
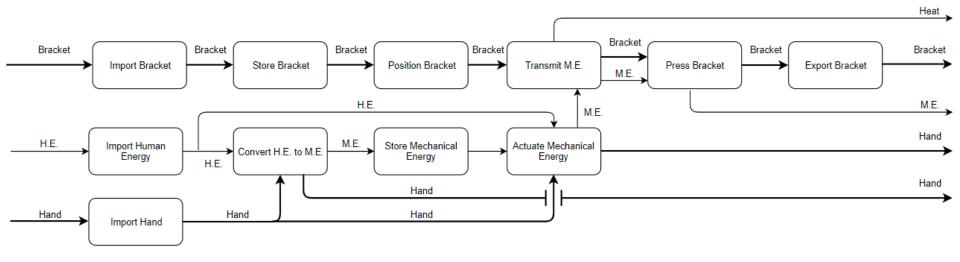




Figure 1. Black Box Model

Elaine Reyes NG Standoff Project | 10/9/19

NORTHROP GRUMMAN

- 1. Mount to Ring ("Import Bracket")
- 2. Hold Bracket ("Press Bracket)
- 3. Apply Axial force ("Transmit M.E")
- 4. Angle bracket ("Position Bracket")
- 5. Translate bracket ("Position Bracket")
- 6. Locking ("Position Bracket")

Elaine Reyes | NG Standoff Project | 10/9/19

- From the six sub-functions of our design, a morphological matrix was constructed.
- Using the morph matrix as a reference, the team used a variation of the gallery method to develop concepts.
- Developing concepts by taking one method from each sub function and essentially building the design from the ring to the bracket.

Morph Matrix

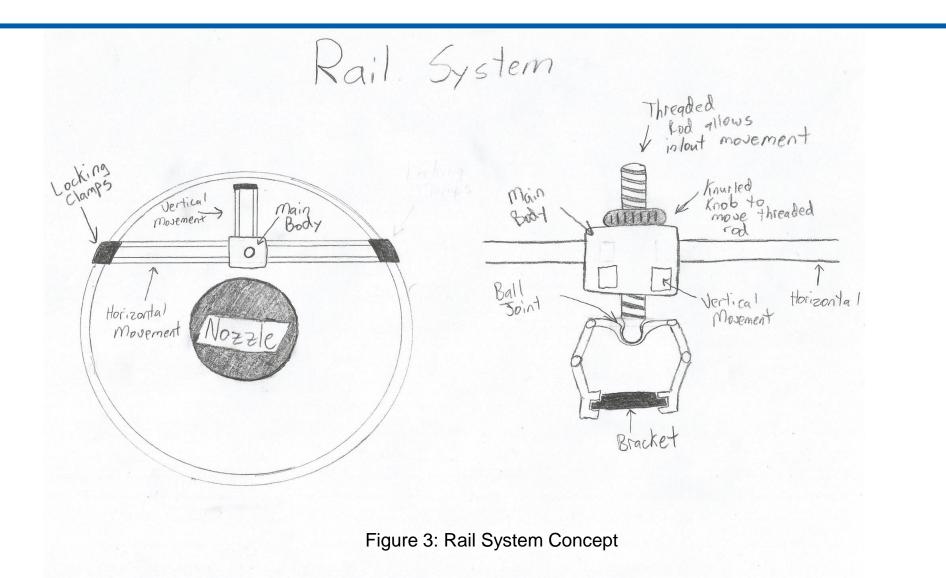
- Six sub-functions for the concepts
- Using the Morph Matrix, six designs were created that are displayed in a design table

Table 1. Morph Matrix

Sub-Functions	Concepts						
Mount to Ring	C-Clamp	Hose-Clamp	Spring Clamp				
Hold Bracket	Spring Clamp	Threaded Clamp	Claw				
Apply Axial Forces	Telescope	Locking Screw	Floor Jack				
Angle & Socket	Ball & Socket	U-Joint	Parallel Plates				
Translate Bracket	Rail	Telescope	Sleeve				
Locking	Locking Threaded Joint		Self Locking Screw				
Grip	1	2	3				

Table 2. Design Table

	Sub-Functions										
	Design Name	Mount to Ring	Mount to Ring Hold Bracket Apply Axial		Angle Bracket	Translate Bracket	Locking	Grip			
Datum	Computer Articulating Arm	C-Clamp	Threaded Clamp	Locking Screw	U-Joint	Telescope	Threaded Joint	1			
Design 1	Rail System	C-Clamp	Threaded Clamp	Locking Screw	U-Joint	Rail	Threaded Joint	2			
Design 2	Rail Crane	Spring Clamp	Claw	Locking Screw	Ball & Socket	Rail	Self Locking Screw	1			
Design 3	Construction Crane	C-Clamp	Claw	Telescope	Ball & Socket	Telescope	Self Locking Screw	1			
Design 4	Biological Design	Hose-Clamp	Spring Clamp	Telescope	Parallel Plates	Telescope	Spring Lock	1			
Design 5	Mechanical Design	Hose-Clamp	Threaded Clamp	Foor Jack	U-Joint	Sleeve	Self Locking Screw	3			
Design 6	Spider Web	Spring Clamp	Threaded Clamp	Locking Screw	U-Joint	Rail	Self Locking Screw	3			



	Concepts							
Engineering Characteristics	Weights	Standard	Rail System	Rail Crane	Construction Crane	Biological Crane	Mechanical Design	Spider Web
ESD Compliance	4		(s)	(s)	(s)	(s)	(s)	(s)
Mass	3		(-)	(-)	(-)	(-)	(+)	(-)
Principle Dimensions	2		(+)	(+)	(+)	(-)	(+)	(+)
Working Length	4		(+)	(+)	(+)	(-)	(-)	(+)
Working Angle	4	Computer Articulating Arm	(s)	(-)	(-)	(+)	(s)	(s)
Durability	5		(+)	(+)	(+)	(-)	(-)	(-)
Reliability	3		(+)	(+)	(-)	(-)	(-)	(-)
Use of Space	3		(-)	(-)	(-)	(s)	(-)	(-)
Adjustable Interfaces	4		(s)	(-)	(-)	(-)	(s)	(s)
Total +		0	4	4	3	1	2	2
Total -		0	2	4	5	6	-4	4
Overall Score		0	2	0	-2	-5	-2	-2
Weighted Total +	0	14	14	11	4	5	6	
Weighted Total -		0	6	14	17	21	15	14
Weighted Overall Score		0	8	0	-6	-17	-10	-8

Table 3. Pugh Chart

Concept Generation (1)

Tyler Hans | NG Standoff Project | 10/9/19

Concept Generation (2)

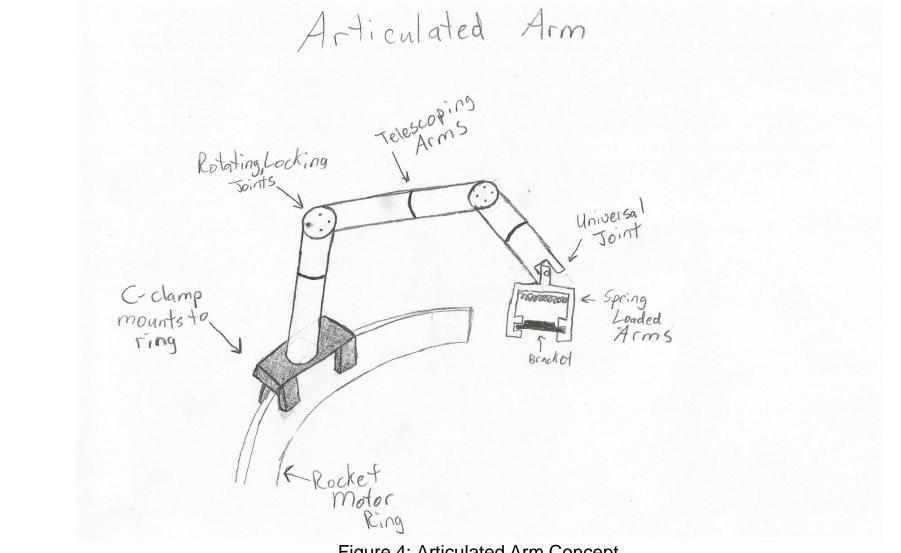


Figure 4: Articulated Arm Concept

Tyler Hans | NG Standoff Project | 10/9/19

Concept Generation (3)

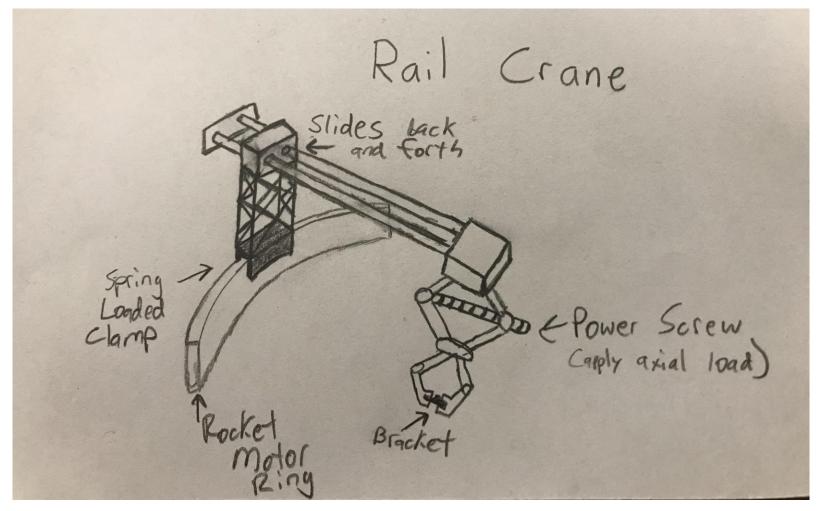


Figure 5: Rail Crane Concept

Tyler Hans | NG Standoff Project | 10/9/19

		Computer Articul	ating Arm	Rail System		Rail Crane		
Criteria	Weight (%)	Score	Weighted Score	Score	ore Weighted Score		Weighted Score	
ESD Compliance	10	100	10	100	10	100	10	
Mass	10	60	6	30	3	60	6	
Principle Dimensions	5	70	3.5	40	2	60	3	
Working Length	15	85	12.75	90	13.5	90	13.5	
Working Angle	15	85	12.75	80	12	80	12	
Durability	20	50	10	70	14	70	14	
Reliability	15	50	7.5	60	9	70	10.5	
Use of Space	5	80	4	30	1.5	80	4	
Adjustable Interfaces	5	80	4	80	4	80	4	
Total	100		70.5		69	77		

Table 4. Decision Matrix

Current State of Design

- Single mounting point arm
- Future Improvements
 - Adjustable rail length
 - Account for ring size
 - Lockable component positions
 - Finish ring clamp design
 - Ensure Modularity

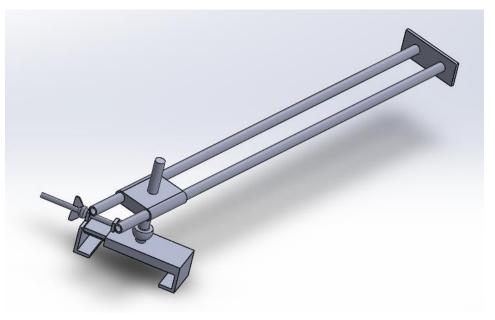
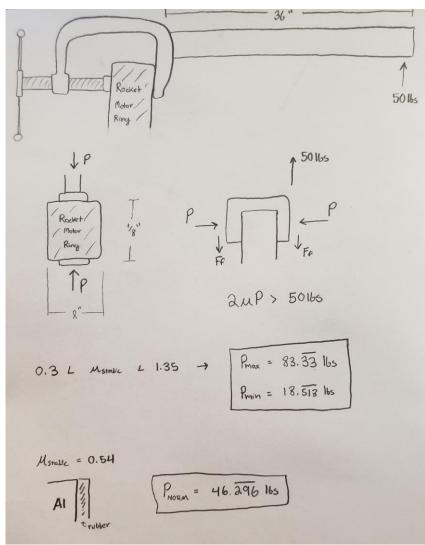
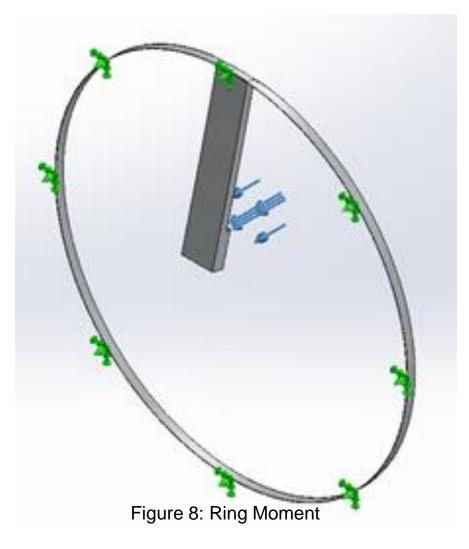


Figure 6: Rail Crane CAD

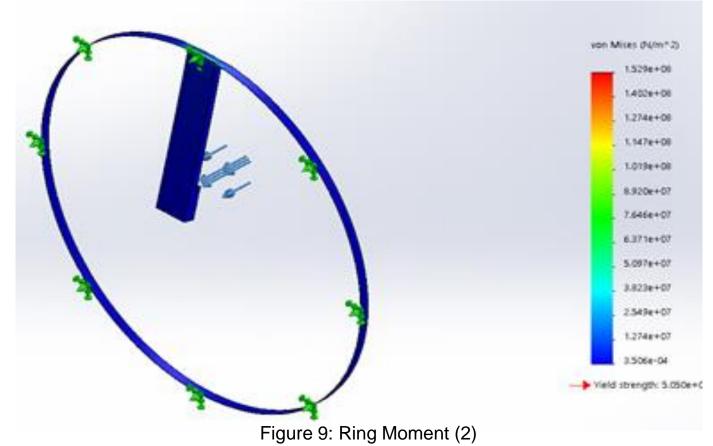
Clamp Force Calculation




Figure 7: Clamp Force Calculation [1,2,3]

Sage Lawrence | NG Standoff Project | 10/9/19

Ring Moment Analyses (1)



- Diameter of 92" (max)
- Thickness of ¹/₈"
 - Below specified 3/16" minimum
- 50 lbf applied (max)
- 36" lever arm (max)
- 7075 T6 Aluminum (specified)
- 1.75" clamp depth
 - Less than 2" minimum available

Stress distribution in the ring

Sage Lawrence | NG Standoff Project | 10/9/19

3.30 Minimum FOS for ring under load

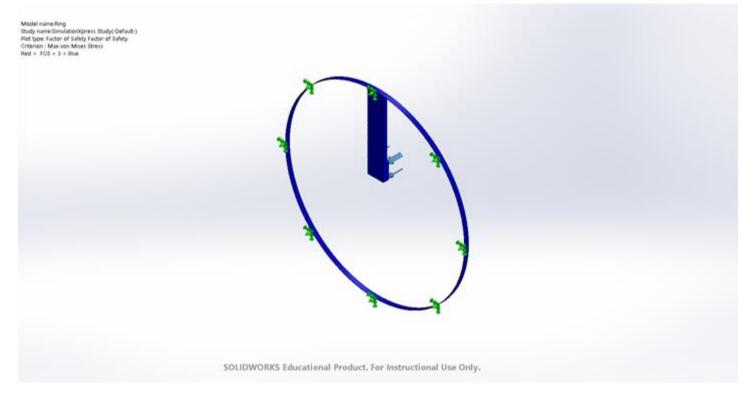


Figure 10: FOS for Ring Moment

Sage Lawrence | NG Standoff Project | 10/9/19

Budget Planning (1)

NORTHROP	GRUMMAN

				Bill of Materia	ls Final Des	sign			
		Tear		Northrop Grumman Standoff Project					
Part #	Part Name	Qty	Description	Functions	Material	Dimensions	Cost	Link to Cost estimate	
1	Rail	2	41L40 Alloy Steel Round Rod 1/2" Diameter x 3' Length	Mode of translation for the Bracket Holder Mechanism (rail cart).	Steel	1/2" x 1/2" x 3'	39.25	https://www.amazon.com/41L40-Alloy-Rod- 500-Diameter- Length/dp/B07WGWQCJJ/ref=sr_1_1?fst=as%	
2	Clamp	2	Adjustable Clamp 9133 Corner/Splicing Clamp	Secure the device to the motor ring.	Steel	1.5" x 7.8" x 6"	14.5	https://www.amazon.com/Adjustable-Clamp- 9133-Corner- Splicing/dp/B0009JGYH0#customerReviews	
3	Bracket Holder	2	Custom made bracket holder, to be manufactured in machine shop.	Secure the bracket to the device.	Aluminum	16" x 3" x 2"	174.00	https://www.custompartnet.com/estimate/ma chining/	
4	Universal Joint	1	https://www.amazon.com/ TEKTON-4964-Impact- Universal-3-	Universal joint to help position the bracket onto the rocket.	Vanadium Steel	6.5" x 5" x 1.1"	11.98	https://www.amazon.com/TEKTON-4964- Impact-Universal-3- Piece/dp/B000NPZ40I/ref=sr_1_21?keywords=	
5	Drive Knob	1	Genuine Echo KNOB, FASTENER for driveshaft coupler assembly	Transmit force into the push/pull system.	Steel	4" x 1" x 2.5"	10.59	https://www.amazon.com/Echo-V299000160- Fastener-driveshaft-Assembly/dp/B07FDJSSFZ	
6	Power Screw	1	Carbon Steel Acme Lead Screw Right Hand, 1/2"-10 Thread Size, 2 Feet Long	Translate force from the knob onto the bracket.	Steel	1/2" x 2'	5.93	https://www.mcmaster.com/98935a911	
7	Lubricant	1	Super Lube 51004 Synthetic Oil with PTFE, High Viscosity, 4 oz Bottle	Reduce friction of the rail system.	Synthetic PTFE Oil	2" x 2" x 6.5"	4.60	https://www.amazon.com/Super-Lube-51004- Synthetic- Viscosity/dp/B000UKUHXK/ref=sr_1_1?keywor	
8	Hanging Scale	1	Klau Portable 150 kg / 300 lb Heavy Duty Crane Scale	Method of measuring force imparted onto bracket.	Stainless Steel	9.1" x 3.1" x 1.3"	23.99	https://www.amazon.com/Klau-Portable- Digital-Hanging- Backlight/dp/B07BHLR9DN/ref=sr_1_5?keywor	
9	Rail Cart	2	Custom made for fabrication at machine shop	Transports bracket holder across rail system.	Aluminum	4" x 3" x 1"	178.00	https://www.custompartnet.com/estimate/ma chining/	
10	Fastener	1	Black Oxide Alloy Steel Socket Head Screw 1/4-20, 4" Long	Works with wing nut to secure bracket to the clamp.	Black Oxide Alloy Steel	3/8" x 4"	9.25	https://www.mcmaster.com/90044a131	
11	Wing Nut	1	18-8 Stainless Steel Wing Nut 1/4"-20	Part of clamping mechanism to secure bracket to clamp.	Stainless Steel	31/64" x 1 1/8" x 5/8"	7.32	https://www.mcmaster.com/92001a321	
			Total Cost E	stimate:			885.16		

- Budget based on best estimation of the requirements of the design, travel costs, contingency plans, and initial prototype
- Cost of Proposed Final Design: ≈ \$885.16
- Cost of Initial Prototype: ≈ \$200.00
- Travel Costs: ≈ \$70.00
- Remaining Budget: ≈ \$8,800.00
- Budget Uncertainties
 - Design Revisions
 - Machine Shop Costs
 - Component Failures

THE VALUE OF PERFORMANCE.

References

- [1] G. Elert, "Coefficients of Friction for Rubber," Coefficients of Friction for Rubber The Physics Factbook. [Online]. Available: https://hypertextbook.com/facts/2005/rubber.shtml. [Accessed: 09-Oct-2019].
- [2] "Friction and Friction Coefficients for various Materials," Friction and Friction Coefficients for various Materials.
 [Online]. Available: https://www.engineeringtoolbox.com/friction-coefficients-d_778.html. [Accessed: 09-Oct-2019].
- [3] R. C. Hibbeler, Mechanics of Materials. Harlow, England: Pearson, 2019.